37 research outputs found

    Biphasic Hyalinizing Psammomatous Renal Cell Carcinoma (BHP RCC): A Distinctive Neoplasm Associated with Somatic NF2 Mutations

    Get PDF
    We report 8 cases of a distinctive, previously undescribed renal cell carcinoma associated with somatic mutations in the neurofibromin 2 (NF2) gene. All patients were adults, ranging from 51 to 78 years of age and of cases of known sex 6 of 7 were males. The carcinomas were predominantly unencapsulated, and all had a rounded, nodular interface with the native kidney. The neoplasms were all solid with papillary architecture evident in most cases (7/8), while 1 was only tubular. All cases were biphasic, characterized by larger and smaller carcinoma cells. The smaller cells clustered around basement membrane material similar to the characteristic pattern of the t(6;11) renal cell carcinoma associated with TFEB gene fusions. In 6 of 8 carcinomas, branching nodules of small cells clustered around basement membrane material within larger acini yielding a distinctive glomeruloid pattern. In 6 of 8 carcinomas, the small cells were focally spindle-shaped and unassociated with the basement membrane material. The stroma was sclerotic in all 8 carcinomas, and all 8 contained psammoma bodies that were abundant in 2. In some carcinomas, focal or predominant areas had a less distinctive appearance; 2 had areas that resembled clear cell renal cell carcinoma, 2 had high-grade eosinophilic areas, while 1 had branching tubular architecture that resembled mucinous tubular and spindle cell carcinoma. Two carcinomas demonstrated cellular necrosis. Although we have minimal clinical follow-up, 1 case presented with distant metastasis, progressed and resulted in patient death. While NF2 mutations may be found in other established renal cell carcinoma subtypes (often as secondary genetic alterations), they are potentially the genetic driver of this distinctive entity

    Alternative Splicing and Nonsense-Mediated RNA Decay Contribute to the Regulation of SHOX Expression

    Get PDF
    The human SHOX gene is composed of seven exons and encodes a paired-related homeodomain transcription factor. SHOX mutations or deletions have been associated with different short stature syndromes implying a role in growth and bone formation. During development, SHOX is expressed in a highly specific spatiotemporal expression pattern, the underlying regulatory mechanisms of which remain largely unknown. We have analysed SHOX expression in diverse embryonic, fetal and adult human tissues and detected expression in many tissues that were not known to express SHOX before, e.g. distinct brain regions. By using RT-PCR and comparing the results with RNA-Seq data, we have identified four novel exons (exon 2a, 7-1, 7-2 and 7-3) contributing to different SHOX isoforms, and also established an expression profile for the emerging new SHOX isoforms. Interestingly, we found the exon 7 variants to be exclusively expressed in fetal neural tissues, which could argue for a specific role of these variants during brain development. A bioinformatical analysis of the three novel 3′UTR exons yielded insights into the putative role of the different 3′UTRs as targets for miRNA binding. Functional analysis revealed that inclusion of exon 2a leads to nonsense-mediated RNA decay altering SHOX expression in a tissue and time specific manner. In conclusion, SHOX expression is regulated by different mechanisms and alternative splicing coupled with nonsense-mediated RNA decay constitutes a further component that can be used to fine tune the SHOX expression level

    MDM2 promotes cell motility and invasiveness through a RING-finger independent mechanism

    Get PDF
    AbstractRecent studies connect MDM2 with increased cell motility, invasion and/or metastasis proposing an MDM2-mediated ubiquitylation-dependent mechanism. Interestingly, in renal cell carcinoma (RCC) p53/MDM2 co-expression is associated with reduced survival which is independently linked with metastasis. We therefore investigated whether expression of p53 and/or MDM2 promotes aggressive cell phenotypes. Our data demonstrate that MDM2 promotes increased motility and invasiveness in RCC cells (N.B. similar results are obtained in non-RCC cells). This study shows for the first time both that endogenous MDM2 significantly contributes to cell motility and that this does not depend upon the MDM2 RING-finger, i.e. is independent of ubiquitylation (and NEDDylation). Our data suggest that protein–protein interactions provide a likely mechanistic basis for MDM2-promoted motility which may constitute future therapeutic targets
    corecore